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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL TRANSLATION F-T1

THE LAMINAR BOUNDARY LAYER AT HYPERSONIC SPEEDS*

By Carlo Ferrari®*
SUMMARY

A theoretical inquiry 1is made into the nature of the laminar
boundary lasyer on an airfoil immersed in a hypersonic stream under the
assumptions that: (2) there is no heat transfer to the wall and the
Prandtl number is unity and (b) there is a zero gradient of pressure
normal to the direction of development of the layer along the wall.

The object of the first of these restrictions is to make 1t possible
to take a mathematically more simple approach to the problem than would
otherwise be possible if the complete general case were essayed, and
yet the degree of approximation will be maintained on a par with that
which is inherent in the statement of the baslc differential equations
themselves, which are governing the flow. That the second hypothesis
is justifiable will be demonstrated in the course of working out the
present analysis.

In the derivations given here, the treatment will be strictly
applicable only at a sufficient distance downstream from the leading
edge. To be more precise, the distance downstream at which the analysis

begins to be valld must be great enough so that Mﬁ/dReX < 1, where M,
is the free-stream Mach number and Re, denotes the local Reynolds

number {which is based on the distance measured from the leading edge,
and reaching downstream to the x-position in question at which the local
Reynolds number is to be evaluated). It is further agreed that the
present note is to confine attention solely to those cases in which the
angular deviations in the flow are small. This is to say, it is assumed
in this study that M B < 1 everywhere, where B 1is the local angular
deviation of the velocity vector from the direction of the free-stream
flow. The perturbation angle is the sum of both the deflection due to
the shape of the solid profile over which the flow 1s coursing and the
angular deflection brought about by the flow disturbances produced
within the boundary layer.

*"sullo Strato Limite Laminare in Corrente Ipersonica.”
L'Aerotecnica, vol. XXXVI, no. 2, April 1956, pp. 68-9k.

**¥Professor of Applied Mechanics at the Polytechnic Institute of
Turin.



The hypothesls is also made that no mix:ing occurs between the
external isentropic flow and the internal viscous flow, so that for
all intents and purposes the angle of inclination (measured with respect
to the free-stream direction) of each streamline at the outer edge of
the boundary layer does not differ from the angle generated there by
the action of the viscous flow lying adjacent to the demarcation line
between these two regions. Justification wil.l be presented for use of
this particularly simplifying assumption dur:ng the course of arriving
at the salient propositions derived subsequently in the text. Under
this hypothesis, then, the pressure distribuvion existing along the
surface of the airfoil may be obtained when “he shape of this contour
is specified, or, better yet, when some governing parameters which char-
acterize the contour shape are given. On the other hand, the shape of
the profile may be determined when the pressure distribution that must
exist along 1t is specified.

Once the pressures have been determined. then the skin friction
is calculable. Numerical applications of the analytic methods adduced
are made to i1llustrate the use of the theory in two different situations:
(a) for flow along a flat plate and (b) for :'low along a curved wall,
the shape of which is specified by means of certain governing profile
parameters.

On the basis of the results deduced fron such an analysis, it
becomes clear that the influence of the pressure gradient, created by
the presence of the thick boundary layer, is appreciable even when the
hypersonic similarity parameter Xo 1s as low as 0.12. These severe
alterations in the pressure perturbations in:"luence in turn the char-
acter of the boundary layer to such a degree that the skin friction
coefficient C¢ can exhibit an increment of such great magnitude that
a reversal in the trend of the curve of skin friction plotted against
M. can occur, as compared with what is usua..ly found to occur if one
neglects the effect of viscoslty in distorting the pressure distributions.

INTRODUCTION

At hypersonic speeds the region of flow influenced by the pressure
field created by a given obstacle in the stream is of the same order of
magnitude as the region in which the viscous effects are important, so
that, as a matter of fact, the entire perturhed area surrounding the
obstacle should be treated as though it were a boundary layer. Under
such conditions it is not permissible to con'.inue to assume that the
pressures found at the outer edge of the boundary layer will be the
same as those existing along the surface of the obstacle, as is ordi-
narily done under the assumption of zero viscosity for most of the flow
fleld, except for the thin layer close to the wall. On the contrary,



under hypersonlc conditions, when the subsonic and supersonic ranges

of speed have been exceeded, it is necessary to account for the fact
that the viscosity of the fluld permeates the flow and influences the
pressure perturbations everywhere in the disturbed field. Thus the
pressure distribution at the outer confines of the boundary layer must
be derived in the course of the analysis. 1In order to carry out the
determination of such a pressure distribution it is most convenient to
tackle separately the two contrasting situations wherein: (a) MB <1,
where B 1s the local angular deflection of the velocity vector with
respect to the free-stream flow, taking into account both the deflection
due to the shape of the solid proflle as well as the angular deviation
produced by the flow within the boundary layer, and where M, 1is the
free-stream Mach number, or (b) MB > 1.

The first case represents the situation where the influence of the
boundary layer on the pressure distribution in the external stream is
going to be very weak, and it is only this type of flow which 1is to be
examined in the present analysis. The other basic hypotheses to be
premised here are that (1) the boundary layer is laminar, (2) there is
no heat transfer to the constraining wall, and (3) the Prandtl number
of the fluid is unity.

The case for which the deviations in the flow vector are allowed
to be such that M B > 1 will be treated in a subsequent report. This
situation may be characterlzed, in fact, as the one for which the influ-
ence of the boundary layer on the pressure distribution in the external
stream is highly pronounced, or, in fact, it may be called the '"strong
interference" type of flow. In the proposed sequel report to this one,
the effect of heat transfer will also be examined in some detail.

In regard to previous work in this field, one can cite the work of
Lester lees and Ronald F. Probstein (ref. 1), concerning the laminar
boundary layer in hypersonic flow for the case of weak interference.
Their analysis is somewhat prefactory because it is confined solely to
examination of the flow over a flat plate, and they use a method of
successive approximations, which presents obstacles to rapid calcula-
tion, especially 1if the desired degree of accuracy is narrowed to
desirably strict limits. Likewise, precursive considerations of an
approximate nature have also been made by others in an attempt to under-
stand what takes place when there is a strong interaction produced in
the external flow. Introductory remarks on this score, but confined
solely to flow over a flat plate, have been made by lester lLees (ref. 2),
Shan-Fu Shen (ref. 3), and Ting-Yi Li and H. T. Nagematsu (ref. 4).

In this present study the objectives are kept quite broad by
allowing the contour of the constraining wall to have any shape whatso-
ever, so long as the restriction as to MyB being everywhere less than
unity 1s not transgressed. With this understanding the intent here is



to determine the pressure distribution along the wall when its shape is
specified or when the geometric characteristizs are designated by means
of certain governing parameters; or on the otaer hand, by means of the
method to be expounded here, one may also det:rmine the shape of the
wall when the pressure distribution is prescribed. Finally, it will be
demonstrated how one can proceed to calculate the skin friction drag.
Numerical applications are given to illustrate the theoretical methods
expounded for two specific cases; the first for a wall-shape having
specified parameters prescribing its geometry, while the second example
pertains to a simple flat plate, used for comjarative purposes.

1. LIST OF PRINCIPAL SYMBOLS

X coordinate axis taken in the direction of and having the sense
of the undisturbed free-stream veloeity, and so positioned
that the origin 1s made to coincide with the leading edge
of the airfoil

Y coordinate axis taken in the direct.on normal to the X-axis
(it is taken for granted that the Y-coordinates of the
constraining wall along which the boundary layer is coursing
will always be close to the X-axis)

\r
L reference length; x = %} and y = :=
u,v components of velocity taken in the direction of the X- and

Y-axes, respectively

Ue velocity of the stream at the outer edge of the boundary
layer (where it is assumed that tie component of this veloc-
i1ty in the direction of the X-axis coincides, for all
practical purposes, with the magnitude of the velocity
itself existing at the confines of the boundary layer)

U, limiting velocity attained when the flow expands into a
vacuum

u:U :U—m —Ue
ﬁ{) Ue, Ul) ue—U?

P pressure

P density

T absolute temperature



i enthalpy
K coefficient of viscosity
1% kinematic viscosity

Note: When the symbols listed above carry the subscript e they
refer to the values that these respective quantities take on at the
outer edge of the boundary layer; and likewise, the subscript w per-
tains to values existing at the surface of the constraining wall, while
the subscript o« denotes values pertaining to the free stream.

* = £
s
¥ = e
. Heo
¥ stream function, defined by means of the differential relations
P oY CR) 4
¥ —% x YRe
* = s Y=
e v B
UL
Re Reynolds number referred to the undisturbed stream, Re = T
oo
Rey local Reynolds number, Rey, = Re.x
C constant which appears in the relation giving the dependence
of the viscosity on temperature, when expressed affinely
H T
as — =0 &
He Te
. Ky Tw
Cw constant appearing in the affine relation ;—-= Cy T
0 0
. Hoo T
Ce constant appearing as the proportionality factor in ™ = Cg T
e e
Y adiabatic exponent

M, free-stream Mach number



Be inclination of the streamlines at the outer edge of the
boundary layer, measured with respect to the X-axis

Bw slope of the constraining wall, measured with respect to the
X-axis, taken at any arbitrary general point along its
length

Bo = (Bw)x=0

R X.pﬁ ax
v

—*
g = ¥ _
Vo*
C
C*r = = =¢
Ce W
20%M2
ﬁﬂ?
1
Xe = M Bo
F function of 6, as defined by equetion (20)
f; function of 6, as defined by equetion (207
(l - u2)
72, T ee———e——
(l - ug)
Zo:—.l—
(2 - )
Z =z -1
ZO—Zo-l




A; constants defined through the relation that
2
*
Zg = Ap * E: Ap(p*)

2. GOVERNING EQUATIONS

It is to be taken for granted that the gradient of pressures normal
to the direction of development of the boundary layer along the wall is
going to be zero in all cases now under consideration. Under this
restriction, it then follows that the scalar equations expressing the
momentum change and force balance are

AU AU _ 3y p) AUy dt. . 3 20 M
pUx eV 7=~ 3x 737 (“‘ﬁ')"" caxt (“31’) .
” 0

do)
N

while, likewise, the following expression for the energy integral also
holds.

. 1 . 1 ” N
‘L+—2—U2=‘.+*2—Uo'=—2‘Ul" (2

From equation (2) it may be deduced that

T _ 1= _ & (3]

T, 1 —u?, e

as is demonstrated in appendix A. Furthermore, if one assumes that the
viscosity is going to be affinely related to the temperature, according
to the relation

= =C 4
the 10 []

and if the nondimensional versions of the velocities and density, etc.,
as defined in the symbol list for wu, u,, p*, etc., are inserted into

the first of the relations presented in equations (1), then one may
convert this momentum equation into the following form



3" du' .0 O_L,!,L_}l‘._- 5
P'ufza—; = ey, ‘d;—‘i‘CP L A u, YR (5]
by use of the Von Mises transformation (see p. 122 of ref. 5}, where
represents the stream function, defined in the symbol list.
Now make the auxillary transformations
_ 1 * Fet 1ot . _ 1w . Te — VRe .
so the equation (5) becomes converted to
U S TRV e S S -
¢ 1—u* JE R T

provided it is understood that
! (8]

Zp=
0T 1 — 2

Furthermore, let the additional transformation be introduced that

-

,: PO. “'o \/T_—u.2 dx

* ¢ C
— —uYdE —

3 _C./o (l—u2dE o

Zez1=2 "% g ge1= N
B Gy ' A N

from which it follows that equation (7) will now appear as

zZ 1 2y
%‘=T‘/Z°_Z:5; [10]

where the boundary conditions on the unknown function Z under these

circumstances are

Z =0 for * =o 35 Z =2Zo for y* = 0 [11]

3. SOLUTION OF DIFFERENTIAL EQUATION GOVERNING THE FLOW
IN THE OUTER PART OF THE BOUNDARY LAYER

In the vicinity of the outer edge of the: boundary layer the dif-
ferential equation governing the flow, equat:on (10), may be written in

the more tractable form of



where this reduction is seen to be legitimate in consequence of the
boundary condition, expressed as the first of equations (11), which
must be applicable in the region under consideration.

Now furthermore, by meking the definition that

w=[Vaie - [ Lowa—c [13]
[} @ L]

provided 1t is assumed that

e T. . __C [14]
=C C*= C.

He ‘ Tc ’

the governing differentlal equation becomes even more simplified, to
read now

AZ 1 ¥Z [12]

9 4 31,-2

and thls expression is identical to the one which arises in the study
of the boundary layer in incompressible flow.

If the limiting value of Z for y* = O is put into the form of

e A = T M+ A = At A9 3]

zZ,=
where the shorthand notation has been introduced that

A= Y=L s [16]
2
then it follows that the indicated form for the solution to the governing
differential equation, equation (12'), is Jjust
.
¢o ¢ e o —9

o T0) = 4 LY Y Ao dy 17
ZWuH—Awm(v$)+v;Ao(¢_¢% @) do (7]

and this solution will satisfy the imposed boundary conditions stated
in equations (11).

4, TRANSFORMATION OF THE INDICATED SOLUTION

let the unspecified function A(p*) be written in the form of a
series development for which
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"

A4 (9*) = Zazo At = Znzo Ay 2°%) (18]
with the understanding that equation (18) is '7alid solely for @* > @X

) 0
when n < O, where QB is a suitable value o7 @¥*, and on the other

hand,

A (p*) = Constant = AX for n SO when P < @6

Now, by use of this development given in equation (18), the formal
solution presented as equation (17) becomes converted to the form

Z (5, $0) = duerfo ) + Tuzo 003 Pt 0 ST 4. [19)
provided one abides by the glosses now agreed upon and provided it is
taken into account that a certain amount of approximation is introduced
through calculation of the various integrals, which are treated in more
detail in appendix B. The nonappearing terms which have been indicated
by the three dots in equation (19) do not hav: to be specified for the
purposes of this study, as is pointed out in the course of the observa-
tions made in appendix B. The rest of the nonznclature for the symbols
appearing in equation (19) is assigned according to the following
algebraic statements:

(F7) SATL - B i“}r:‘:(e)] = Anth [CNsS 120}

where

6 = — [21]

and where the complement of the error function has been indicated by
erfc 8, and where the repeated integration of this same function has

been indicated by 1"[erfc (e)]. It is considered to be sufficient for

purposes of the present analysis to ignore the expressions for FZ
having terms in A; for which n < -3.
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5. DEFLECTION OF THE STREAMLINES FRODUCED BY ACTION

OF THE BOUNDARY-LAYER FLOW

By reference to the equation of continuity, it may be observed
that the change in angle of inclination of the flow at the outer edge
of the boundary layer, when measured with respect to the inclination
that the stream has at the constraining wall itself, is given by means
of the formula

20w, p (¥ 2 (po “’")di}]'— 2C u, p,. D [\/FJ:MS (ﬁﬂ‘_l)de]

b Be= VERe %o PoJo 9\ pu VvV Re %o P. 39 Peths \ P U
o Yo P [ 3 [Px Up)]|,e 22
+C uc pm {3Q.( Plul )]4)6 [ ]

where Eg and wg denote, respectively, the values of E* and of ¥

which are obtained at the outer edge of the boundary layer. The upper
1imit on the integral appearing on the right-hand side of this equation
is taken to be infinity, rather than the value of 6 corresponding
to ¥y = Wg, because as 8 increases into this range of values the

integrand tends towards zero very rapidly.

6. CALCULATION OF THE INTEGRAND APPEARING IN

THE ANGULAR-DEVIATION INTEGRAL

In order to carry out the determination of the angular deviation
Be 1t may be assumed that the expression for Z obtained as the external
solution in section 4 will be valid here. The Justification for this
assumption will be given in appendix C. For purposes of evaluation in
equation (22), it is thus possible to make the substitutions

P Ue ZO . hotd =_1__ z° 23
e =+ z=g 5 o u.V1+z° [23)

where Z 1s given by equation (19) and Zyg 1s given by equation (18).

Furthermore, under the condition that MB < 1, it is admissible
to assume that, at a sufficient distance downstream of the leading edge,
the changes in state which take place along those streamlines which
travel downstream to meet the outer edge of the boundary layer will take
place isentropically in going from the conditions (pw,pw), existing in
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the undisturbed flow, to reach the conditions (pe,pe) at the outer

edge of the boundary layer, regardless of the fact that a shock wave
is traversed in the process. Taking into account this simplifying
assumption, the density ratio is found from -he expression

1 1

P P \y w2 — ot \" T,
b (?)’ - (l+ A =7 ) Y [24]
and inasmuch as
u? — u,? :l_.L _ZL=__14__ 1 [25]
u? u 14+ Z, Ay 1+ 4,+ A
it turns out that
- 1,2 4: | 29— 1y+4 6 A
e 1 \7v=3 1 —y A v—1y
o = =1 A s 4 3 T A i iy 26
“—<1+ﬁj MR T W U e e 8y — 1) at [28]
4,

provided it 1s assumed that AO >> 1. The ccnvergence of this series

< 1 must hold.

development is assured simply by stipulating that

It is also true that

e 1 [ Zo _[1+A/AC,'

— = = = ~ 1
u,, u, \Jl + ZO Vl + A _ =
1+ 24
where again it 1s premised that AO >> 1.
Thus,
Pw Ye 1 A 2—y A4 2y*--Ty+6 A3 G-
T HE S B W Ty |l i Yt Tl R [27]

Now take Z in the form

Z—=A,F,+ 2"

where

Fy = erfc (6) and zZ* = Tazo F.' (0 q,.-.}
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and observe that then

Z, Ag+ A
Z,—2 A7+ (28]
A —F(1+ S =)
Now whenever ¢ 1is of the order of magnitude of ﬁ%’ it is pos-
-1 A - Z*
sible to develop (1 + @) in a power series, where ¢ = —— 8 ———,
Ao(l - Fo)
Making use of such a development, one may recast equation (28) as
Z, 1 Z*— AF, (A—ZY(AF,—2Z%  (A—Z*) (Z*— A4 F,) ,
Zz = ot (i [ =i B
and consequently,
( Z, \)V: 1 ) 14 1 Z*— AP, N (AFg—Z) [4(A— 2" — (AF,—2Z%)]
2,7 (1—F)% | 2_%u—F) N 8 4,7 (1 —Fp)°
(Z*—AF) [(Ze—AF)4 4 (A—2%) (Z*— AF) + 8 (4 — 2] | .
+ T8 A (T = By jto- [24)

Combining these above-derived expressions, it results therefore that

Pa Us (Pl A 2—y A* 2y*—Ty+6 A% J
Pe U,y (pu—l) [1+ —l A0+§(-(———l)’Ao T e(y—1P A4
a l+A Fof 1 . g B AP, | 1 (AF— 2 [4(d—2%) —(AF—2* )] ] 20
[ Y i rgmiitt a=Fan (z+ w25+ 7 A (T—F) [30]

where for brevity's sake the term standing on the right-hand side of
equation (29) which is enclosed in the braces is indicated in egua-
tion (30) merely by use of the empty braces {}.

Now let the integrand of interest be represented by a sum of terms
of the form

P Pe Uy _ ,
Mipu q_m+m+m+m+m [307)

wherein Hqy stands for a group of terms which are independent of A;,
H, represents a group of terms which contain A;, Hy represents a

group containing A;E, H5 represents a group containing A;5, and so

forth. Thus, the definitions of the quantities Hi are the following:



1k

. 14+ A F,
Ho= =1+ 7w
1 14+ A,F, Z*—AF, 2z 41 [ 1+A0F0}
= . L : —_14 ol
Hi= oy T=Fg% d,0—F) " U—Fyn 4, v—=1 |7 T 0=Fyu
go_ 1+ AF, (AF—ZY8(A—Z)—(AF, =29 1 _ Z* 7+ AF,
2= A= Fy% 8 A (L — Fop 2 A—F% 4,(I—F,)
1 A{1+AF, 1 Z—AF, Ze |ty AT 14 A,
YD1 A la=Fgn 2 A, (0—F) T O—Fon | T2 1)2,4,,[ =y ATS
o L HAF, (22— AF)[(Zr— AP +4(4—2) (2 — A L)+ 8(4— 2 1]
3T U —Fy)n: 16 A2 (1 — F,)°
N 1 1, (AF— 7 [4(A—29 —(A Fy— 2°)]
(1—-Fy)': 8 At (1 — Fo)?
1 A+ AF (AF—2)4(A—2)—(AF—2)), 1 7 Z:—AF,
T Y=T & [T—Foe BA(I—F,F U—Fps 2 4,(1—F,)
L2y £[1+AOFG 1z —AF, 2
TA1R AR | (1—Fg. 2 Ag(1—Fg) T (I=F,)%

LY IR .
T TRy —I)  Ag 0I—Fgh

7. CALCULATION OF THE INTEGRAL APPEARING IN
THE STREAMLINE DEVIATION FORMULA
Having obtained the sought serles expression for the integrand
appearing in the integral giving the deviation of the streamlines, it

merely remains to perform the piecemeal integr-ations, according to
the formula

[[Bete(Ete _1)ag= ["(Hy+ Hit Hyt ot )d0= T+ b Lt Iyt
o

S0 Pels eu

Proceeding with these evaluations, one f:nds that

® © 14 A4, erfc(8)
I=| Hydo=| |—14+ T 2" jgov 4, K, 32
[ o f o [ + Verfc (6) = 2]
where
erfe 0 39/
K,= . (32]
f Verf 6
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Likewise, then

o n ® ]+ erfe 6 Fr(8) - AY erfc o = p*(g
Il‘f Hld9=AOZ @*2Lf Ao d A?e de+f __n(__)_de
0 n<0 240 o \Jerf £} Ag er 0 Ao\/erf ]
>

1 Ay [P erfce 5
eric 2
+ —_— ——de| = Z Ki.n @ >3
y-1h Jo \err e %o n<0 on []
>

In the case where n # -2, one has that

A [ 1 ™14 A,erfc B fu* (0) —erfc (= fa*(6)
K, ,= [ do ' 2-'d 6
v 4, [2‘40 0 Yerf 6 erf 8 + jo Verf o
[33-u]
1 “erfc® ] Ay .
—— d 6| = K
+ Y—1Jo Verfo A, !
whereas, when n = -2, then
Av . Ao 2 i1 14 Agerfe® 9 e 02
Ky = 2= gt s 1) )
1ot A4, ot 4, V=n Qe Ju( 24, erf 8 + Verf
’ [33-b]
A A
- A02 K;-—Z + Aoa K’l'—l
where
2 1 ([, 1 1+ A,erfcd f e-6*
Ky op = == f . 1) Z—dg. 33-c
v Ve 9*72 )0 ( 24, erf 6 + Verfﬂ [ ]

Continuing on, to evaluation of the next integral, it is found that

* Jtm 1 14+ A,erfcOerfcd A, — F,*
Ig=fo sze_AoZ‘..;oE.-:_w 2 z SAofo Verf6 A, (er] 0)2
A, —F,* erfc® - A,*— F,,.‘} 1 f“’ Fe* F,*—erfc0A4,
-4 — dé+ —- e
[ 4, 4, Y2 ), A Verfo | Aoerfo
1 f‘A.‘ [1+Auer/ceF,,.‘—erle-A,.°+ F,* 29
=1 ), 4, | 24 Varye A,erf 0 Ao Verfo

2—y A»0 A, [ erfcH ‘ n+m
= = L] * K n,m -
+ 3y 12 AfF |, Verf® do Auz-;oz 2?2 2.m,

do

[34)
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In the case where n # -2 and m # -2, one has that

_ AsfAN 1 1+A.,er!ce gtfiQ—f, e e
Kuwa= P [5n ), T oy O el pnld0
1 R fut —erfct 1 [ 1+ Agerfc) fa*—erfcf fn®
— do e —1|d o
t g jo Vierf8 erf 9 + Y—lju 2 A/ erf € erf @ Vierfo
2—vy _erfcB AfAS L x .
e -do Ky nm 34-
+ 2y—1) . } Verf l Ae* * (34-a]
In the case where n = -2, m f -2, on the other hand, one finds
that
A A o A fAry 2 1 1+A crfc§ g . .
Kuwn= A gy o ) 5], e et Ut bp a0
_ 1= 0e8 f,r—erfch T e A A A, .,
2)o Vo 0 a0 = F5 Kt THF Kaa [34-0)

whereas, for n f -2, m = -2, one sees that

AL A0,y Ap A, 2 [ 3 = 14 A,erfcO erfc@—f.* o9 d 6
Kan—2= A Ken-s— 7074, Vroh 1 84c)o  4/e8 (erf 6) ¢
09 1 {°f1- Agerfc® Qe ® 0 ed ApA* gy
_ e_,_ﬂ_J (ﬁ + d6{=-——————., K, . -
2 .’ \/erje erf 9 y—1Je 2A°\/er/6 erf 8 \/erfe) 40 B
[34-¢]

Ayl A ,
+ T—’KL.,_,.

Finally, therefore, the fourth term in th: evaluation of the
expression for the streamline deviation is

Iy = f Hydo = AoZu 0 Zm= 024» O‘szl

At e S e )

o (F TN G e )H(“J T (- |ao
1 /* Al A —F0 (3 . / .

tsl, A.,f/m erfczoferfe)*F [4(AT:._ i: J=(erted- i:. - i'o

1 A.‘j‘g 1+ AyerfcO erfc60A,*—F,* 4(‘4’. _ Fy A, Fpe
y—1 4, 4, 4, )_( 4, 4, )]

A, (erf 0)% 8 A, (erf 6)®
1 F,,i_—_ P, —erfcO- Ay ;de + 2—y AplAL «:I[ 14 Agerfcd F,o—erfc - A,
2 Ao Verfo Agerf 8 2(y—1)y A4¢ v 24,V erf0 Agerf8
27’_7Y+6A-.A-.A. ® erfcO mng

? f dez A= oE- 02' 0 P* 3 7’Kll.'ll

l O+ e w—1r 47 oV erfb

+
(35]

+
Ao\/erfe
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In the case where n # -2, m # -2, and D f -2, one finds that

K,, L

An.Am. P. ® nt—
**L; 1 14+ Ayerfco f erfc® [(fu® — erfc 8) - (f,* — erfc 6)

Agl 16 Ao- Jo Verf9 (erf 9)°
+ 4 (l — Im® _— (7} 8(1— ™ 1— H d R ". 7erjc o ,m.
In*) (fy* —erfc®) + 8 ( fa*) ( 148+ o \/e'r/ 8 (erf 0)2

1+A O f 0— m.
el o e)’z [4 (1 — fp*) — (erfoB—f,°)]

l @
c [4(1 —f,r) — — f
[4(1— £,%) — (erfo 6 — £,)]d 6 + Y_ljol

A,V erf 8
1 fm* for —erfc@ — 14+ Agerfe® f*—erfcB f*
_ d 0 » e
YT Teve erf6 ‘ “2(7—1)2 t‘ 24,4/ erf6  erf® Vsl *°
2y —Ty+ 6 erfof . ) Ae Al A,
8(y—1? J, «/T;edei“ dg  Kammr [35-a]

In the case where n = -2, m # -2, and p # -2, it is found that

. A* At A o« A Ayp (A 2 )
AB.—z.u.p=_z‘AT—g_ Ky omp»t A ( Aoa '\7—;?.% )
0

1 © 14 Agerfc® 6e® . . L f ey (fe
'gwAuj \/e:fe (erjoy LU=t —erfo8) (fy —erfed) & 4 (1 — fu2) (fy* — erfe0)

1 [ 0e® 60— fm
+ 8(1—fm*) (1+f’.)]de+TIo \/eerfe er’(cerlﬁ)!

[4(1 —f,) —(erfc6 —f,*)]d 0

w® . A - A , .
= AA::’ ( Ao’ K, 3mp+ A: K’y 3, n.p) [35-b]
where
2 1 (1 14+ Ajerfcd e ® [(fuo— erfo) - (fyo—erfc 8) + 4 (1 — fut) (fp* — erfc 0)

K's, _ams= ‘\/F % ' 164, /, (erf6)  (erf 0)3

+80— ) —fd0+ - [ f;%"f O AL £, — (erfos — ;140 [35-¢]

In the case where n # -2, m = -2, and D # -2, it is likewise
found that

) _ ArA Ap s Aedyp A, 2
Kyn-2,= — A Ky u-2»+ A 4, VVroh

. (lﬁlA. j’: l+‘\2:‘;;fce b (;feer)l:e [—36e® (f,*—erfc 6) —80¢® (1—f*]d8
- 1 (* far —6e® R . 1 14 Agerfcd —@2e-0"
8 )o Verjo il [4(l—f')—e”°e_”)]d°+y—lj., AN/erf6 BlerfOF

Ae

. . Qe for—erfch Al A0 (A * A%-3 s 36
[4(1‘",p)—("fce‘—fp)]+2\/m 5 erf 8 dﬂ)_ A0 (Ao’ Kayn -1+ 4, Ks.u.—l.r)[ ]
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where

2 1 z 1 ™ 14 Agjerfc® fo—erfc [—36e® (f,— erfcb)

K',.m-..,=ﬁ-§;7. 1864, /s +Jerfo (erf 8)°

s . 1 /1 fe — 6§ 8" e e
—80e0 (1—1,)d0+ '[',me[ul %) —(erfc 6 — £, d 6

1 “{1— A,erfc6 —6e 8 e A fe Be-8 f,o—erfch 0. [36-a]
+350 )] A,/erf8 Bl T I e i) e e :

Finally, in the case where n # -2, m # -2, but p = -2, one has
that

¥* L%, K

* * *
. AT . LA RS L [TLidoerteofh-erfeop
5}1’1;1!1)'2 3 5,11,1!1,-2 1/2 l6AO Jo Tt 6 (erf 9)5

*
g2 ) ©  f* erfc g - f
- erfc 8 + 4)ae”® - 8(1 - £X)pe~® ]de + 1 f n m(_3g0-82)0
¢}

8 \lerTe {erf 0)2

ol -92
fm eee

46
erf @

(-30e-9%) + %

1 \jﬂw 1+ Ay erfc 8 erfe 6 - £y
0

AgVerf o 8(ert )2

E

erf

2y fﬂo 1+ 45 erfc 8 4.-6 96-62
+ + ie
20y -1)2 Jo | oagferr e eTT e rro

AAnfAl, Axg
= <A.Tz 3,n,m,=-2 * TAEQ K 2> [57J

3,n,m,«

where
2 1
Kynm-1=—=~—5; [37-a]
oo \/ﬂ:%'y'ii

in which the empty braces denote the series of expressions standing
within the braces of equation (37).

The sought expression for the angular deviation integral is thus
obtainable from the following series:

ey “ P.p “m Pcuc_ _ -. v . "ﬂ
Ve foW(pT l)da—Ao[\/‘P Kot Zuzo9' 2 Kiw

nim+1 nioa4ptl .
} [38]

T ZnzoZmzo? 1 Kymmt ZazoZmzoTpzo®* 2 Ky onm,
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8. CALCULATION OF THE STREAM FUNCTION AT THE

EDGE OF THE BOUNDARY LAYER

In order to evaluate the stream function at the edge of the boundary
layer, it may be noted first of all that the velocity profile within the
boundary layer may be expressed, through means of equation (9), in the
following form:

.l F-‘ .4,.‘
ut 5O+ Saews (= 50+ 5)
wolTg Ar ® [39]
" ) 14 Tazo S o°3
= An
e
Now let it be assumed that the square of the velocity ratio (75;
we
e

will take on a constant value at the outer edge of the boundary layer,
and let this constant be denoted by Cp, where Cg will be close to

unity. Thus 1t may be seen that the value of the stream function at
the outer edge of the boundary layer has to obex the following relation,
obtained from equations (39) by setting v* = 2%

‘:’: q>‘Vr) = erfc (6s) + Za F"—;l(:@- o (29]

a—c(1+ =

where the quantity 6g 1is related to the stream function at the outer
edge of the boundary layer wg, through the formula

']'-'\lf* Re

85=2 Sjv;—;-

where obviously Og has been used to indicate the value of © which,
for each ¢%, corresponds to wg.

Having obtained the solution for 8y by solving equation (29')
under variant parametric values for Q*, it follows that the sought
result for the stream function, when evaluated at the outer edge of
the boundary layer, will be given by

24/ 00
$g* = \)llg 8 . [40]

When one compares the result just adduced, equation (39'), with the
expression written above in equation (38) for the first term in the
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angular deviation formula, as given in full in equation (22), it is
apparent that the second term on the right-hand side of this equa-

tion (22) is negligibly small with respect to the first one, when the
Mach number is large, that is, when Ag >> 1. The neglect of the second

term with respect to the first is countenanced on the secure grounds
that, in fact, the ratio of the second term to the first is of the same

order of magnitude as j;.

9. CALCULATION OF THE COEFFICIENTS IN THE SERIES DEVELOPMENT FOR

THE COMPLETE ENERGY INTEGRAL, CHARACTERIZED BY THE PARAMETER ¢*

On the basis of the notation and developments written out explicitly
in the preceding sections, it may be seen thet the derivative appearing
in the first term (the only one needing to be evaluated) of the angular
deviation now takes the form

-a _.‘m Pmum (F‘cu- —1\d0= -b 1A "/K « OI'T"K
3?‘[\/‘9 jo Pets \ pu ) Far [A0]F Kot Tnze®t s fan

1+r+m 1+ntmty
3mmp

+ ZnzoZmz0?" 7 Kummt TazoTmzoTpzo® 2

K a4+l 1 T+ntm  rimdo,
= A°[2Iq>‘[;/=‘ + zn;o 9 * 7 K+ Zn;., 2»-;. T P 2 Kowm

l4+n4+m+p  ntmte—l
— 3 ¥ 2

+ zngo Zn;o 2,;0

Jon,p|
)

In conformity and analogy with the assuription as to the isentropic
nature of the processes taking place along the streamlines, as premised
previously in setting down equation (24), it is likewise permissible to
presume here, for purposes of obtaining a sui.table expression for the
pressure ratio entering equation (22), that now

i
: w1 . —1) 4 6y*—Ty+2) A°
,z’-_z[HAub wllyw x4 x@y=l) T8y =Ty +2)

u?,

[E W I T | sy—1p  ag T W

@®

Y,
and inasmuch as ﬁi«— 1, it follows that the sought angular deflection

values are expressible as



b= 20A x4 y@y=D A vy Ty A ”1
e T Pu /e Y—1 4, T 2(y—17F A 6(y —1)° R
K 14+ n 1 - - ntm+ 1 nAnt o
' [“27;:.‘1/, + Znzo ; 97 Kt ZazoEmzo = 57— T2 Kamw

ntm4ptl  mbmied
—-—2__— P 2 3,mmp

+ Engo Em;o Z;;o

Jj:j;_h{n K, . -.] (p""i:: + Tazo Tmza Zrzo {— Y£6g:(;:_7});3t2) I;O ii%::ii
* }2((2714_—17:*)" liz_pK"’ .4:;::; - Y—Y—l 7 7;+ l K“‘"‘% wri;’ﬂi Konms ?_,M:,;l:

Now let it be considered that the angular inclination for the
constraining wall will be developable in a series of the form

‘
Be=DBo+ B o*% + Ra*+ - = Bg Ti=o bi @*3 (bo=1) [43]

so that one may state, in consequence, that the angular inclination
obtained at the outer edge of the boundary layer will be given by the
expression

6 _ 2A:C
L] VE

g t +BoXi b ‘P"?‘_ (44]

where the empty braces standing in the first term on the right-hand side
of this formula have been employed to denote the entire set of terms
contalined within the braces appearing in eguation (42).

Under the dictates of the premises so far made in this analysis,
it is true that the pressure ratio may be expressed as

2y

P =“+1%1meﬁi (45)

®

and, thence, by referring back to equation (41), it is seen that

1
y—1 B AT 1A 34 5 a
1+ 3 M.,B.—(l+7;) =l gt 3 a: 164,

from whence it follows that the angular inclination at the outer edge
of the boundary layer may be written specifically as
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1 1 A 3 4 5 A 11 4,0
= —_— e — | — e —— _————— ] — Y e, T v,
s Ao( L O Yo ) — M[ Inzo g~ 9
3 Ae A mtm 5 A Ay Ay whrtel  2AC4] L L
2. i M, S I - L Ant Aty JTIER AU 6 s b [46
7 Trzo Tmzo a4, 4, *¢ g Znzo Zmio Lslo AP P 2 Ny 73 ”+Vou 17 [46]

The solution for the coefficients in the series development for
the complete energy integral characterized b;” the parameter ¢* may
thus be effected by equating like terms in the power series develop-
ments for ¢* involved on the right- and le’’t-hand sides of equation (46).
Upon carrying out this matching process it iis found that the following
set of relationships result:

In the case of equating the coefficients of (@*)_1/2, one obtains

Y_-I:T ﬁl: [— A‘;:‘ + 4 Suzo *ﬁ—f ‘%f,_—' — g Bazo Tuzo T A"A‘;.i';']
-2 R L e S T
— Yll l—2-n K, _u :‘::. + —;— Kg.-,—.] + Znzo Zmzo [- Y(GGY:Y__T{);*— 2) —12(—0
Yy l1—n A [47]

1
- '{—l —2‘— Kg.n,-n.—ﬂ A_o + _2“ Ks.l,m,—n.—m ]s

whereas, when the general terms in @*q/z are equated, one obtains the
set of expressions

11 As 3 A A 6 Ao A A%
[— 4, + vy Zazo 4, 4, S Zazo Tmzo — To,“——]

2Aoc-{2+qu' v Ko A%y, z‘.o[ym—n Ky A® A'iiga

g Tt T Y 2T 4, 2(y—1) 2 A4, A,

_ XY 2+4g¢—n A2 | 2+44¢ ’ _Y®8y'—7v4+2) K,
y—1 e Ky 1+¢-n 4, + 9 Ky nites : + E-;o E-;o { —6_(Y——1)3—— 5
Au.A-.A.l+'—l—n+ Y(zY—l) 2+q—‘"—m K + Au' Au.__ Y 2+ qg—n
Ag 2(y— 1) 2 LA R P y—1 2
A, 2
‘ Kl.-.1+.—-—- A_ + —;;—q‘ Ka.-.-.x-H-:—- ]}'{‘ b, go [48]
[}

where bq =0 for gq <O.

It is apposite to introduce at this point the hypersonic similarity.
parameters

e =—F7=— ;i Xe=M_Bo [49]
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and thus the various unknown coefficients which are to be evaluated by
use of the equalities given in equations (47) and (48) may be expre§sed
in terms of power series developments in the parameters Xe and Xg.

The working form for such solutions is given in the following array:

Ay . ': 3 2,02 L —_1)3y%.2
j(o~=Do Xi—(r—Dx%+ S == =1+
J 3 3 ,
A Dy X Dbt e Db — e (= 1 by
0
Ay 3 a2 3 2 3,73
A‘ =Dy ¥ —(r—Dbx'e+ — (b + 2b) (y —1)* 1’ — 5 (b b) (=11 .
0
Ay D e+ D 0B+ [50]
A,
A'_,_ .
_AO——D—z p S S
A‘_s_ )
Ao —'D—S X +---
Ao
szDIS Xe +st-3+---
(1)

wherein the unwritten terms contain powers of Xe and Xé with exponent
larger than 3, while, in addition, when i 1is odd the terms by are

taken to be zero. It may be noted that the coefficients D will turn
out to be functions of y and of Xé, and the way these parsmeters may

be evaluated will now be demonstrated.

Iet the auxiliary definitions be introduced that

3 1
L1="‘(Y—1)X-'+T(Y—‘l)’X-"—*z—(Y—l)’X-'a
’ 3 2 2 3 2 73 51
Li=—(y—1) by + "Q‘(Y‘—l) by Xe —'T(Y—l) by xe (51]
h=—4w—”%n%—%4W+2QHW—WLm_%WW+bJW—UWﬂ

and also let the symbols %o be specified according to the following
2
array, constituting equation (52):



2k

[62]

ain

ay,

Qg

s

agy

aiy

Y SyEy—1 _y@y—1) _y@y—1) |
Ta (4,24 —0.67 7 0.67 L 0.617 5 0 0.675 10 —
—5.045 1 _ —6.585 " —4.445 -7
y—1 y—I1 y—1
15.88 +5.295
Y y(2y—1 r{2y—1) yy—1) !
7.44 —0.67 0.67 0.g7Y\EY—2) 0.7 YY) —
o v —1 (x—1p° G—Dnf | (r—1¢
Y Y _ g8 ¥
—9.185 - —10.165—"; 8.875 1
+ 13.965 +13.53 4+ 15.105
(2y—1) y@y—1) |y @y—1)
ap |10.05—0.67 Y| .67 Ex—! 0.7 YY" | g gy YEY ) —
" v —1 Y—1)? (y—1)# (y—1y
—12.395 " —13.80 Y _ 135
y—1 v—1
+20.95 1+ 20.25 4+ 21.475
y(2y—1) y{(2y—1) y2y—1)
x, 10.335 Y0 16 67 0.87 — —
o (y—1p (y—1n (xr—1)°
+2.345 +4.24 7 +5.855 "
Y— y—1 y—1
4+ 2.93 4+ 6.28 +0.83
2y—1) y(2y—1 yE2y—1 y(2y—1)
o |5.925—0.67 Y| 0.67 Y 2 0.335 0.67X2Y—1 | g g7 (Y
i y—1 (y—1)y (y—12 y—19 (y—17
897 Y —4.24 Y —7.44 1 —8.805 —T
—1 y—1 y—1 y—1
4+ 9.86 + 4.87 +10.71 1+ 2.86
Y y(2y—1)
.6 — _ _ _
xga |0 7y-——l 0.67 y—1p
Y
+2.346 Ty
+7.076
2y —1) @2y—1)
— 10274067 Y| 0.67Y.2Y B3 Y ) — —
. 0.2 +067T_1 R s 0.338 7 T
—2.0715 +8.74
y—1
—1.35
2y—1) y(2y—1 Y(2y—1)
2 | B.RT5—0.67 —Y | 0.67Y(2Y 0.67 0.33572r—1 —
o y—1 (x—1¢ y—17 Y—1)F
—1.22 Y —11.88 7 —5.925 1
y—1 y—1 y—1
1 17.76 1+17.90 +8.3
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Also let the simplification of notation be made that

3 15 3 15 3 5 5
=1 By oF TR - {1 — == . -2 —_ . L2
A=1 5 L,+ 8 L ; o ) (l Lx) - 5 (Ls 3 L, L, L, ) . [63)

Consequently, the sequence of D-values will be determinable from
the relationships given in equation (5k4).

(y—1)* 0.87 4 Lo,
A

Doy ==——5—

— 1)
LIR 29 2 ’&2")— (a5, + Lyay,) Ly

= 3
1 —1)®
3N (D7) + iY72’ 2 (5.1 + Ly 2e0) D'y
D, = A
15 —1)2
2, (L, D, + D' D)) — 8 Ly (D) — ’(Y 2 )7 [L, D oy o+ Dy + Lo )]
D, = - -— A - - - e =
. . (y—1p .
2, Ly D'y + 2, D'y — 9T (Lyxg, + Ly Lyng, o + Lof o)
D, = 3
1 2 . pe x 15 ‘e o
a0 (LaDyt 5 D34 Doy D)+ G Do— g (Lo DY+ 2 Lo oy D)
D, = S —
A
_ (L_‘_)L 2'73_(12.1 + g a) + Lo Doy g+ Ly Doy 22
2 A
15
a (Lo Dyt DY DY)+ 3y Do— o (La D4 2 Ly Ly Doy 4 2 Ly Iy Dy + 2 Ly D'y D)
D, = s T - —
_ D LDyt L DYm [54]
2 A
5 — 1)
a((D'-y Dy) — e D=,y ’(L‘.!L (Doy2y0+ Ly Doyosp + D 2.5)
D, = A
3 , 15 , ,
3 (Ea Do+ DY Do) + g DyD'oy — - (D2, D=2 LD D)
D, = - 3
_ A(L—l)’ 2L, Dyoy, + D' Dy agat Le Doy 2y n
A
D = _‘1|<L1 (D’—| + DD\ + Dy ¥, + D, DY) + g Dy
L= =
A
15
B (204 L) D Doyt 2 LD Doy Do D) (D) DY+ (D) D)
- A
= Dy + (L Dyt Do Ly ag s £ (D) %5+ D'y Diatsg v Ly Doty
2 A
D = 2y (Ly D'+ DD+ D D'_, + Dy D'y} + my D,
) = T e
A

16 LD D+ Dy Dyt Doy D)+ Bs (Do D
4 A
(y —1? Dyoy,, + (Ly Dy + Ly Do) g 4 + D"y Digay s+ 2Ly Dy s )

2 A

D £ Dy D)t U D Dyt Lyl Doy
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10. DEPENDENCE OF THE GEOMETRIC CONTOUR OF THE AIRFOIL ON THE PRESSURE

DISTRIBUTION MAINTAINED ALONG THE EDGE OF THE BOUNDARY LAYER

It is seen that equations (50) give a relationship between the

A ¥
coefficients - (which control what the pressures are at the edge of

the boundary layer) and the parameters b (vhich determine the shape
of the airfoil constituting the constraining wall). Thus, if the coef-
*

ficients %%— are known, because it is taker for granted that these

values were fixed beforehand, then it result: that the coordinates of
the surface constituting the constraining wall will be produced by the

A*
analysis, 1nasmuch as one has, for known =L coefficients, that

s Au. _n_? —
C* (x —2x,) = ,:.{1_*‘2»:,070_@.2‘7 ldcp‘ [55]

v

¥
YRR by
Cozy = [l +Z-A—0‘Po' 2_];' ! P’

y
¢ A, LY e [d 1 A " —
b gz T [l‘*‘Z-,}o A4, ‘Pu‘?]y ' +/w‘ Tibipy |:l‘+’2n_:_g 4, q;'?jy ! do*.

(ol yf =Zi

i

[ =)
+

*
Conversely, if the values of the coefficients ég— (and thus the

)Y
nature of the pressure distribution 52) are considered to be given as
o0

a function of the parameter ¢*, then by means of equations (50), one
will be able to determine the corresponding values of the contour
generators bi where one takes into account the determination of by

for values of 1 <O (i.e., for o* > @S), w1ile the values corresponding

to o* < wg are represented by B, = Constant., 1In this latter circum-
stance, therefore, equations (55) constitute sarametric relationships
for the description of the constraining solid wall corresponding to a
given pressure distribution along the edge of the boundary layer, as

D
described by the set of values (59, Q*)-
[o.0]

As an intermediate form of proceeding, Lring between the two

opposite versions mentioned above, one could :onsider the values of
*

the coefficients o to be specified for n 2 O end the values of
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by =0 for 1 < 0. Under this arrangement, then, the relationships

spelled out in eguations (50) provide the means of obtaining the values
of Ag”

v for n < 0 together with the values of by for i >0, and

once these quantities have been elicited, then one may proceed to use
equations (55) to determine the shape of the constraining wall.

11. LIMITS OF APPLICABILITY OF THE EXPOUNDED METHOD

The values of @*

for which the method expounded in the preceding
sections is valid are those for which the following inequality holds

Ae o7 n
4, meT <!
Po* 3

A
4, T Inzo

and from this condition one may establish, as the lower 1limit on o*
for which the method is legitimate, the following criterion:

2
An \T 1
»*
q)min = 1lim ( ?\'

= for
nN— —« o

n<0 and for A <1
An+1

and likewise one may set as the upper limit on m*, for which applica-
tion of the method is justified, the following criterion:

* 2
Q* = lim -1 A for n>0 and for A <1
max *

n—+o\ Ay

In both cases one must specify that the sum of the series, which
are assuredly going to converge if the stated conditions are obeyed,
must be less than unity.

12. DRAG LAW

Once the pressure distribution along the boundary layer has been
determined, it then becomes possible to calculate the velocity varila-
tions taking place in close proximity to the wall, and with this knowl-
edge at hand, 1t is then easy to determine the drag. The way these
steps may be carried out is as follows:
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First let equation (10) be recast into the form

22 _ V[T ¥z .
9 4 Z, ¢! (107

and note that in this expression

1 Z_u<
T Zy, T u,

Now, in order to obtain a description of Z which will be more
precise for that region of the boundary layer which is close to the
wall than would be obtained by using the solution for the outer region,
it may be assumed that in this close-to-the-wall region the velocity-
ratio term standing on the right~hand side of equation (10") may be
replaced by a relation of the form

Mo % (66]
. 8

U,

where Eg has a value corresponding to the eraluation of 85 obtained

from equation (39'), where the definition of Eg in terms of By 1is
Just T3 = \p¥es.

In this new relationship for the velocit;s profile near the wall,

the constant ¥ has to be selected in such a way that a reasonably
satisfactory approximation will be obtained for the actual well-

substantiated law of variation of %F- as a function of E*. Upon
e

%
examination of profiles put into the form of plots of (é: H g;), as
4‘”6

obtained by using data for which Ue Vvaries with the x-location by

obeying an exponential law (such as treated by Falkner and Skan in their
work on the effect of pressure gradients on bcundary-layer character-
istics) having the form U = K x%, it is fourd that Jﬁy should take

the value 1.3. With this selection for <f it is readily verified that

equation (56) gives a good approximation for the way &é varies,

regardless of whether the flow is experiencing an acceleration or
whether it is going up-hill against an adverse gradient. Thus it may
be assumed for present purposes that
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/1_£ —13 /—f [56')
Jr—Z =)

[ ds*

Now make the transformation of coordinates defined by

" _de
=), oo (67]
and thus equation (10') becomes converted to
2z _ 13 5, ¥2 (58]
A9 4 ¢

and if the further change of variable is made that

’f16 -, [59]
n= vl—3¢ %

then the governing differential equation appears as

RZ D (—:f 3Z) (58']

and the boundary conditions formerly stated as equation (11) now become
2 =0 for n=eo ; Z =25 for n=0 [117]

An appropriate solution of equation (58') which satisfies the
boundary conditions stated in equations (11') is

*‘w H ’ ]
Z(p.m) =J° (?T(q;'))? 0_9(0’"—«:')‘1 e’ (60)

wherein the function H(¢p') has to satisfy the integral relationship that

» H(e)d ¢’ [61]

Zo(‘?) = ° (9_?1)%

Thus the H-function may be written as

_sinm3 d (o Z(e) , ,_sinw3 [ Z,(0) Zo(¢")d o’
f 0 (@—gqf)'/- d¢'= " [ :p'/- . (;—‘P')'/'] (62}

where the dot over the Z3 has the usual significance that
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s dZ
Zn (Q’)= d q;- ¢

Thus an appropriate solution for 7 may be more explicitly
written as

n

e . — e "

e ip—¢" e ?ig—o)

Zy (0 / —_l—‘_._-l*d ’ '/ [“-”Tv‘
O = 1T L=y

( @ L
Z,y (@) ,] , sinn/3 { [ e 9 (@—¢) ,1
| B@) gl =SB oy Lt
.[o (@ —q)h T]T? ™ O 2 (e — oy ¥

3
Z(an)=§1%ﬁL

® kg —
. e ¥p—p)
zZ d ’[ v 7\ d@’-
+fo ole/)de, Joo (g—9)% (9 — o)

Now the Indicated integrals appearing hers may be evaluated to
give the following results:
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wherein the symbol TI'(8,n) is used to denote :he incomplete gamma
function, defined as

I'(6,n) =f:t"~l e—dt.
Consequently, the sought solution for Z may now be written as
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which gives the velocity distribution occurring in the boundary layer
in proximity to the constraining wall.

Next, then, it will be of interest to find the value of (EzLD P
K
Yy =0

—
oV
inasmuch as the skin-friction drag may be evaluated once this derivative

is known, because the velocity gradient is related to this derivative in
the following way:

2Z 2u Fu 2u, p, U

0 T—w 2y T T—u? o Dy’

It is immediately apparent what the value of the derivative is by
reference to the expression for Z given above, and when evaluated at

—*
¥ =0, the result is

(35, ) S ) ()

om0 G2 | =R n () S () G2

9’
8

The frictional shear stress may thus be evaluated by use of the
information at hand, inasmuch as

(2 ol (de) gl ot VR (32
"-—‘!‘-(31(»)?:0— L (.ay)y=0— C. L 2w, ~ 9 '34',: =0

where an affine connection between wall values and free-stream values
for the product up has been assumed, that is, where use has been made
of the substitution that uyp, = CyOHe. It should be observed that in

this system of notation G, = C*.
u2
Thus, because 1t has been pointed out earlier that e > Ag,
(l 'uej

it follows that the sought expression for the skin-friction coefficient
may be written as

. C. sines (L o% (16 )‘/. ®_dZJAy  _ eeos Cn [* 8ZdAe o
O= 0, "R m - )1 (15) [ e =" Ve Jo o=y [
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13. EVALUATION OF THE INTEGRAL APPEARIN: IN THE SKIN-FRICTION

FORMULA AND SUBSTANTIATION OF A SIMPLIF[ED EXPRESSION FOR C

In order to carry out the indicated intesration which is required
for evaluation of the skin-friction coefficient, as just defined above,
it will be found especially convenient to proceed by msking the
substitution

P=4a o' (64
¢ dz, /A
in the expression in question, namely, d[\ -——521957— where it is
]
JCRERE

assumed that a 1s a constant.

This assumption for the affine relation between @ and ¢*3/h
is justified on the basis of the results of detailed calculations such
as those made subsequently in sections 14 and 15. In fact, it is seen

from these calculated results that the ratio is actually always

m*a/u

going to remain very close to unity for a very remarkably large range
of variation in the parameters Xe and Xé.

Now, by changing the limits of integraticn, one has that

Jo (p—o") T4, @'l Aoi 0 714”1 (p— ")

{" dZyAy, 1 Zy(e®) , 1 (% 27, d ¢’y

where @y 1s used to denote the value of @ corresponding to o* = @6.

In addition, previous analysis gives that

1 d2Z, n As»
A, det ~Inio3 4, @

and thus, thanks to the affine relation specified in equation (64),

the evaluation of the integral appearing in tle expression for the skin
friction may be reduced merely to the requirement for evaluation of the
series

4 n L4 an_ :
I= g Eea s 5 5 [T ¥ 6 nde, [65)
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From this starting point, then, in the case where n > 0, it is

®
found by replacing 51 by t that

in 2
- —_— g — - 1
fv o’ (p—) ’dqnféquu‘ p—o) *do= foq»’“*‘l’—‘(l—t)"‘dt
Pe . .

I'(p) T (9)

—_ +1 = +e+1
g?+t+1 B (p.g) =¢" TP +9

where p = 2 and q =

b

u.l =

In the case where n < 0 there is no need to consider other than
the following three discrete cases:

(a) For n = -1 +the integral becomes

fw o T (p— M de e [1‘5 (&)—'/' _2(&)% — 041666 (&)%
P ? ? ?

—0.21164(&)"' —o, laseoz(ﬂ)"" —0.097499(&)"/' —0.074817(&) b +2.64912]
? ® ® ?
. P0 <
provided it is teken for granted that E; = 0.5.
(b) For n = -2 the integral becomes
[ _.l.__l _n/. _ i _l—_ i___ ~./. i—- \5}
w.?l (q’—¢l) dq’l’_‘ Q' [4 (?0 1 +(¢0 )
3 (9 B[l (e Jd_o3 (e (Ll e _3_=_.3_1__1'/'(i+3
=?(;o~—) [_T(E—l)_*_l}_?'(% l) (4 %+ 4)- 4@’(% ) Po )
(¢c) For n = -3 the integral becomes
4 1 3¢t b6t -
o oY d o — 39t . 6t | 107\ — 0.503833 ¢~
f“ P i(e— o) ed oy 6?.( o + 30 + J) 9
where t = - ‘éfcp - 90
1 (¢ + ') — a1 2t—eh%
= %o ['°3 Fogniign TV tan vy
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Having carried out these detailed evaluetions for I, the following
pertinent summary formula for calculation of the skin-friction coeffi-
clent may be used:

vV Reo*% C, =/ C, 0.6826 [a~*)s + a*r g% 1] [66]

At this point it is worth noting that it one drops out of this
expression any contribution to the skin friction arising because of the
presence of the self-induced pressure gradierts, and if Jjust the case
of a flow over a flat plate 1s considered, then the above-written expres-
sion reduces to merely

V' R. 0, = v/ C. 0,6326 (66]

while it will be recalled that the widely used Rubesin and Chapman
result (ref. 6) for such uncomplicated conditions is

VE.C =T, 0.684

Consequently, it appears that the skin-friction coefficient Cs¢ 1is given

by the present analysis to an accuracy which deviates only about 1.8 per-
cent from the well-established value that hatc been found to be generally
applicable.

For purposes of a further check on the rresent derivations, com-
parlson can also be made with the particular pressure-gradient case

u,
studied by Falkner and Skan for which ﬁ% = hx 1n an incompressible

stream. In terms of the developments adduced above, the case in ques-
tion is handled by first evaluating ¢ as

#* der 4 1
‘P“fn 8,% % 3 0%

[

inasmuch as under present circumstances, as is demonstrated in appendix C,
the value of 6g 1s a constant and, in fact, 8g = 1.46.

Meanwhile, it is also true for the present case that

1 dzo ( 3 )l/"' [ 17
=h - 0 /l 3
ut de 4 ol ®

and, consequently, the skin-friction coefficient may be evaluated from
the relation

1 ginnf3 ( 1 (ls'h 9% 3 ..fw ot d g,
O=Vm = | +)(ws) = e [ R =o
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but because the indicated integral may be evaluated as

ey

it follows that, for this special type of pressure gradient, the present
method predicts that

ks x
v Re

It may be recalled that the equivalent expression obtained by
Hartree in this same case 1s, lnstead,

C, = 2.187

h'h x
YV Re

and, consequently, it may be seen that the error involved in using
equation (66) for the case under consideration is only about 11.4 per-
cent from the accepted value.

C = 2.46

On the basis of these checks it appears, therefore, that the
expression for the skin-friction coefficient, as embodied in equa-
tion (66), will be sufficiently accurate for most purposes.

14. APPLICATIONS

A numerical application of the theoretical method expounded above
will now be carried out for the following two cases of interest:

(a) a curved constraining wall defined by the relation

d *
ﬁ":d_:z:@"z‘b‘@.a

(65]
in which

)}
m:&%7;m=1;m=_2;m=—mas;m:oﬂwi¢&

(v) a flat plate for which B, = O.

For both of these conditions the calculations are to be made for
the following six selections of concrete values for the Mach number and
the Reynolds number: Reynolds numbers teken as Re = 106 and 107 and
Mach numbers taken as M, = 5, 6, and 8.
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A typical value for the total temperaturs is selected as Ty = 250° K.

On the basis of this assumption the value of the constant: C* may be
obtained from the relation

=3

G- T VT TES L

where the relation between viscosity snd temperature is assumed to fol-

T
low the Sutherland law. Now the iz ratio is obtained from

(oo}

T-
T,

=1-+3:%AAML

and consequently,

0.55945 for M,

5.0
C* =Cy = ( 0.48826 for M, = 6.0
0.38501 for M, = 8.0

The corresponding values for the parameters X and Xé are
summarized in table I.

The values of the constants Kg, K;,m, Kz,m,n: which appear in

equations (47), (48), and so forth, have been calculated once and for
all by assuming for @y the value 4/500, which may be considered as a
guessed trial value, but which really does not have much of an influence
on the final result and will not be altered :n succeeding steps. These
K-values have been collected to form table I..

By means of the determining relationships set down as equations (50),
*

(51), and so forth, the values of the coefficients -——— have been

Ao

ascertained and the results are presented in tabular form. These values,
presented as table III, pertain to the case of the curved constraining
wall.

By use of equation (67) the x- and y-coordinates of the curved
constraining wall have then been computed from the values given in
table III and the results are presented in table IV.

Graphs have been constructed which show the shape of the airfoils
corresponding to the coordinates given in the tables, and these contours
are given with 5 times magnification of the vertical scale in fig-
ures 1 and 2.



57

The corresponding pressure distributions gg have been calculated
oo

at the points along the airfoil contours by making use of the values of

A3

-2 which have been presented in table III. The location parameter for

P
the pressures is ¢¥, and the pertinent sets of 59 values are displayed
o0

in table V.

The pressure distributions which are produced on the airfoil shapes
displayed in figures 1 and 2 are also depicted in the upper set of
graphs in figures 1 and 2, by plotting the data adduced in table V.

In order to arrive at an evaluation of the skin friction produced
on such airfoils, it is first necessary to obtain values of 6g which
hold at the outer edge of the boundary layer. These values may be
obtained by solving equation (39'). For convenience it may be assumed
that Cp = 0.9252 = 0.990025, and then by making use of the data of
table ITII, the sought values of 6§ may be determined for the usual
sequence of ©* values. These operations have been carried out and
the results are collected into table VI.

The values of @ which correspond to the selected values of o*
for the various Mach number and Reynolds number combinations now under
consideration are presented in table VII. It may be observed from

scrutiny of these values that the supposition that ¢ = a@*B/u (as
suggested in eq. (64), with a assigned the value unity) is quite amply
justified. Moreover it will be seen from the results that setting

a =1 is legitimate in every single case for the whole range of vari-
ables under consideration; as an example, even for the condition of

Me =8 and Re = 106, the proportionality constant between ¢*5 and

¢ 1is actually 1.041, which 1s close enough to unity for practical
purposes.

Making use of the tabular information that has already been referred
to, one may now proceed easily, through use of equation (66), to find
the skin-friction coefficient Cy which will be given in the combined

form of a term denoted by qﬁg 5*1/2Cf. These values are presented in

table VIII. They have also been plotted according to their location
along the airfoil chord, in the upper graphs of figures 1 and 2. In
order to plot against the X/L—coordinate, one needs to use the data
from table VIII in conjunction with the information given in table IV.
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It may be seen from examination of the profile contours given in

figure 2, which apply for Re = 107, that the contour shapes are prac-
tically indistinguishable from one another for the three Mach numbers
illustrated. On the other hand, the graphs showing the corresponding
pressure distributions for these three profi es exhibit a rather marked
difference, and this notable variation takes place even though the high-
est value of Xg that is involved is only e = 0.124. When one looks
at the similar curves for the pressure distr:butions that have been
obtained for the other three profiles, perta’ning to the lower Reynolds

number situation, for which Re = 10, the d:fferences between the dis-

tributions are even more accentuated than those for the Re = 107 case,
but this significant spread in the distributions in this latter case

(Re = 106) is to be expected because of the pore elevated values of Xe

that are involved. The pressure differences that are observed in this
latter case are, in fact, not surprising, because the corresponding con-
tour shapes are appreciably different, as shcwn in figure 1, even though
the constants bj are the same, of course, in all three cases.

15. THE FLAT PLATE - NUMERIC/L APPLICATION

By returning once again to use of equations (50), (51), and so
*

forth, the values of the coefficients %% heve been determined in the
present case of interest, where the profile contour has been assumed to
be that of a flat plate and where the same flight conditions of Mach

number M, and Reynolds number Re, as used in the preceding section,
*

A
are again selected for illustration. The cormputed values of -2 for

Ag

these conditions are given in table IX. These coefficients have been
used to compute the relation between ¢* and the x-coordinate on the
flat plate, and the results are presented in table X.

In order to arrive at an evaluation for the skin friction, the
necessary task of calculating Oy has been carried out for the case
of the flat plate under consideration, and th= resulting values are
adduced in table XI.

When the values of @ are computed, whih correspond to the values
of ¢* +that have been used here, it turns out that the constant a
appearing in equation (64) takes on an averag: value which is very close

to all the individual evaluations of the ratis ——%75. For the several
qJ-)(-
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different flight conditions under consideration, it is found that these
various median values for a are the following:

0% ; a = 0,98857 ; A
07;a=098852; ~*

=
[

_A VR 1 _qf 108 a — 0.97213 -
M, =5 | R, 1 8y 107 ; @ = 0, 98508 .

([

10 ; a = 0,98814 ;
10

7 a = 0,98821 ; R, =

X
bl

Making use of the information that has now been assembled, in this
case of flat-plate flow, the pressure distributions and reduced skin-

friction coefficients A = VﬁgJ; Cr, which are locally realized along
the flat plate, have been computed and the numerical data are given in
table XII, while the graphical display of these flat-plate airfoil
boundary-layer characteristics are given in figures 3 and k.

The influence of the parameter X, 1in producing significantly
different levels in the pressure distributions is again evident from
these flat-plate data. It is especially worthy of note that the data
show a trend of increasing skin-friction coefficient with increasing
Mach number for the larger Xe values. This behavior is in direct con-
trast with what is seen to take place at values near X, = 0. This
astonishing result thus runs counter to what is known to occur in reality
and to be predicted theoretically at lower supersonic Mach numbers.

16. COMPARISON OF THE THEORY WITH EXPERIMENTAL RESULTS

In order to give a check on the validity of the deductions and
formulas presented in this analysis, a comparison can be made between
these theoretical predictions and the results found from experiment,
such as those reported by M. H. Bertram in NACA TN 2773 (ref. 7), which
pertain to the boundary layer on a flat plate immersed in a flow with
hypersonic speed of M, = 6.86 and with a Reynolds number for the sec-

tion of Re = 0.98 x 100.

The confrontation of theory and experiment in this case will be
made with respect to the pressure distributions which were measured, as
compared to those predicted here. The theoretical data points for the
Mach number of interest My, = 6.86 have been obtained by interpolating
between the calculated galues which apply for M, =6 and M, =8, at

a Reynolds number of 10-. The theoretical curve, thus obtained, has
been sketched in on figure 3 by means of a dashed line. Even though
the scatter in the experimental points seems to be excessive, neverthe-
less, the theoretical curve, devised as just stated, appears to consti-
tute a very good mean line for the experimental findings, particularly
for values of X/L greater than 0.15.
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APPENDIX A
TEMPERATURE-DENSITY RELATIONSHIP EMPLOYELD IN THE MOMENTUM EQUATION

In order to arrive at the simple form given in equation (10) for
the differential equation governing the flow in the boundary layer, it
e
is necessary to make use of the relation é; = E%; this simplification
e

may be substantiated in the following way.

When the terms representing the effect 5f viscosity are dropped
out of the momentum equation describing the flow in the boundary layer,
then the resulting more wieldy version may be written as

v () = 5 (5 (A

where the new variables have been introduced through recourse to the
Von Mises transformation, as employed to obtain equation (5) of the
main text.

The formal solution for the pressure difference existing at the
wall and at the outer edge of the boundary liyer may thus be seen to
be given by

P P _ % 2 ad U AP . T, N b S B PR PR
i e Tl I e LR Sl Ml Y= (p) 2
Consequently,
Pe  __ [ A | u . _(M?,C’ZV& jed 2 Uy
e K e A

Now, inasmuch as it was previously agre:d that

u . /Zn‘—z . _ _L P. ls'_..lo_ ) (Pm uc)de
u, _‘/ Z, ’B—B'-*-VE Po “Jo 9 e u
_ X S y—1 Y y— P 8 7 (pm Uy )d
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it follows that

Pe ey XeXle [% 7 ( u %\ d

D, _1+Y0V¢{Aﬂ fo 29 \ u Tubie ) o
y—1 % ff%_ 2 [”‘ of°—-—3 (L= 2 de]de}zl o X Xe 0(——"'2 1.

g M?.,fo AT Y Aopu) +(M1)+ Mi)

Thus it appears to be entirely permissible to use the relation

Pe pe T T
e _ o~
e rp T. T,

in the first momentum equation of the main text.
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APPENDIX B

DETAILED DETERMINATION OF THE Fj(6) FUNCTIONS APPEARING
IN EQUATION (19) OF THE TEXT

In the development of equation (19) from equation (17) of the main
text, it was admitted that certaln approximations were being indulged
in; the step-by~-step evaluation of the pertinent integrals involved is
given below, in order to show the precise place of introduction and the
slight degree of importance of the simplifying tactics employed in
arriving at the description of the F;(e) furctions appearing in equa-

tion (19) of the text.

The integral to be approximated is, for the general case,

¥ W*Q Alp) = E: Ao* when ©* > g
- Y ==
P*-0’
¥ €
= A(p')de' for <
V; 0 (q)* - @’)5/2 -1 1’1/2
Alp) = L vhen % < g
K.. Y. ==

Consider the followlng specific case for the first of the sequence
of n-values:

In this first case, where n = -1, an aprroximation for the sought
evaluation can be obtained by proceeding in tke following way. Consider
the integral

* »*
? ] -‘i/-*2 @ x2
* Il T
—}L* e Q-0 dfp' - ﬁ e q)*-cp dq)v
Vo o (or - 913202 VK (g - g1)3/2 11/
*
%0 .2
v
= ¥ '
v e ¥ ap
Vr (% - 9')3/2 913/2



b3

from which it is readily perceived that

¥ —x2 —x2 P4 2
v v ° v
—* T kot X g
L e P*-0' do' _ 1 e @ _ ﬁ e QX' do!
2 g
v o (9 - 01)3/2 o1 1/2 o o (¥ - o) 3/2 913/2
v
Now let the simplification in notation be made that 8 = — and
CP*
thus the indicated evaluation for @¥% >> @S is obtainable as
= e 1 1__9’-: —Y
ge j‘w‘. P —;:,——_07 do’ 2 [,,:V; (1— %')‘/z e P'dj _ 2 1 ‘/’e( ¢ ) efdi3
=] e =e)h 9% = | - e 0 \h  /x 9% 6 \%
V), (@ @)h 9'h L '; ‘P.V’(l—'—ﬁT) \/T! o (I—F)
w.

~_ 21 64:»' gz 0"
BRI a4 ?*

Consequently, the evaluation of the first integral under considera-
tion is obtained from the following development:

. . v

—_— L] —_— - "w. _—
¢ [G e < do¢’ ¢ e 9—¢ ,
I, = A — 'YRERIT Ae_ -l eI T d
v =] e —erh ok TATE R e TP
1T _r 2 . , 8
= A, [—\/q_;. e ¢° — \/,}— :.“./. 02 -9 ] + Av, % 3— erfc[(—l _ (p?}‘/_:] + erfc 0} .
Q.

The quantity set off within brackets reduces simply to

_erlc[(_l—__eT‘)y’J +cr’°0§—er/c[9 <1+A;_ ‘:o:)]——erjceg ?e“% 0%)7. .

Consequently, it is evident that the first integral of concern may
be evaluated for o* >> @8 as

e

%

I,=4°,



Ly

In the case where n = -2, conslder the :.ntegral

v ©

¢ e ¥ d de’ 2 1 e8dp
Vi J go @ =0V ¢ T Vr @ ( . )y. 168
’.

2 1 ] ) e ) e-B .
=7:—7-[°f.( R B*—e"””f( oy ”‘*]

o*—e,* P — e

’.

Now let the first of these above-written integrals be more closely
examined. It will be seen that

‘o « - P o N © da
Ol—/o(—L)y‘ B — dﬂ 0’/6 o )% g — ot ‘dﬁ‘*‘ﬂieoﬁ( o )V, e

»*—° (v‘—v.‘ *—9*

and it is further readily recognized that the first of these two con-
tributions to the right-hand side will remain finite as @O - 0, and,

consequently, 1t remains finite for Q¥ > mo. Thus it is permissible

to replace the lower limit in this first intezral by the value 6; then
one may wrlte it as

e-f ”’"‘” elh—e?¥ qa—_eHO)

When this is done, it may be observed that H{B) -0 as 6 - .

Now consider the other contributing part of the right-hand side of
the above equation; in this instance it may b> observed that

= 1/z
- /L. AME

Then of course, for 1 > ¥ >> cpé, it is true that

g 55|55 g |

so that, finally, one may give the approximat2 evaluation for the second
term in the series expansion under examinatioa for o* >> @6 as

I y= A, :2 [er/c (0) — —i—e—ﬁ'

,‘/
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This approximation that has now been made in arriving at this
result for I_o 1s not really essential to the development being

expounded. 1In fact, rather than to follow the recommended procedure,
as previously given, by ignoring in the expression for I_o the term

¥ 4
term could easily be taken into account. To do this, while not changing
the expression assumed for A(p), one would be led to take additional
adjusting terms in the development for By, other than those prescribed
in the treatment given in the main text. These additional terms would
adequately compensate for the presence of the previously ignored term
1

>

q>*
involving - log ¢* | in comparison with the term - log —Q>, this
P

log o*.
Continuing on with the evaluations, the following manipulations
are found appropriate:

In this case where n = -3, one has to assess the value of

—V—"

Y AN EPPL R pedp
Vi S TR ST T W o g E O

@ .
( Pt —¢*

o1 [ en " Be-s' (1—BY)dp l .
o \/; q:"/- [e 80 ‘q)o.y: + 2/()( ‘J’:“_V)‘/z (;32__62)1/z
P —¢*

Inasmuch as the integral of the above-indicated second term is
finite for B = 6, then 1t 1s permissible to substitute for the lower
1imit the value 6, provided o* >> @6. When this is done, it will be

seen then that

R Ul 5 TR

\/—f; ]
R o (26

4

and consequently, the sought evaluation for the third term in this
series expansion under examination is given as

e-9' (1 —262?) 2 1 6e-8" ]

I_,— Ae_
* : @i Vi eh e |
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APPENDIX C

It is easy and illuminating to make a conparison between the values
of Be computed by assuming that the veloci-y profile for the flow in

the boundary layer 1is that which corresponds <o the outer-region solu-
tion (as contrasted to the correct expression for u) in the instances
where the pressure gradient 1s of the type considered by Falker and Skan,

which is éi = hx®. The comparison will be made here in only the sim-

plest cases, for which m =0 or m = 1.

Consider the case where m = O (thus wh:re h must be taken as
unity). For this particular situation, and uider the assumption of
incompressible flow, the pertinent basic relationships, 1n the present
notation, are

Z, 1 Z 1 Te
= ’ = - ; 0 = - ¢TfC .
- x w 3 l b3 i \/ P

Iet the usual arbitrary definition be maile that the thickness of
the boundary layer is that distance of displa:ement from the wall where
the velocity ratio has reached 99.5 percent of the free-stream speed,

or for which &t = 0.995. Thus,

so that erfc (95) = 0.01, and thus one sees from the numerical tables
that 0g = 1.8. Consequently, the angular inclination reached at the
outer edge of the boundary layer is given in thils instance as

B'zx/%??p‘(\/&fom(W—I)MJ:\/},O'%W'

In actuality the accepted value for the angular deviation 1s

0.885

Bl = \/}Te

so that the error made in using the formuls developed here 1is about
11.8 percent (above the value given by exact analysis).



Continuing with examination of the case where m = 1 (where h

may have any value whatever), one may write, in the presently agreed-

upon notation, that

2
um

=he*; Z=2,T (2 uiterfc(0) =u? ho*uiterfc(8)

Consequently, 1t may be seen in this case that 0.0l = hieerfc(es)
and the numerical tables thus show that By = 1.6,

Therefore, in thils case, the angular inclination reached at the
outer edge of the boundary layer is given as

2 D (= ("1 fu V(%2 g

e L T v e L R e ke
—haz 7( ! )2_""’_1.46:——2-&—1«
29 \vV2hoe'/ V2 VERe V'Re bz

k7

while the exact result given by the well-substantiated Hartree analysis

1s

- 2 1
Bo=— vV Re Wiz

Translated by R. H. Cramer,
Applied Physics Laboratory,
The Johns Hopkins University.
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TABLE I
M, =5 M, = M, = 8
p Xe = 0.1435 Xe = 0.522 X4 = 0.696
Re = 10
Xe = .13986 | Xg = .21092 | Xo = .39425
- | x& =0.435 Xe = 0.522 Xe = 0.696
Re = 107
Xe = 04423 | Xe = 06670 | Xe = .12L6T
TABLE II
Kf}"i = )4-)4'5 ———————————————————————————————————————————————————————
S il K2,0,-2 |77 = |Ke,2, 2| Ko, 4, 0|~
= -6.42 = =4.53 = =349
------------------- KE,-l,—l KE,O,—I K2, 1)"1 K2,2, -1 KQ, 5,‘1 Kz;h‘)'l TTTTTT
= 8.74 =8.82] =8.87| = 8.90| = 8.92| =8.95
Ki,0 = 469 Ko, 20K _1 01Kz 0,0 [K2,1,0 |K2,2,0 [K2,3,0 |¥o,4,0 |K2,5,0
= T7.771| = 5.331= 5.86 {=6.14 |= 6.33 |= 6. = 6.61 |[=6.72
S K> -1,1|K2,0,1 K2,1,1 [¥2,2,1 [K2,3,1 |Ko 4,1 |-—-—-
= 3.69|= 4.45 |= 4.87 |=5.12 |= 5.34 {= 5.50
¥*
1K1,2 = 3.95 |Kp 2 20Ko 1 2|Kp 0,2 [K2,1,2 |K2,2,2 [K2,3,2 (Ko 4,2 |------
=6.19| = 2.82{= 3.5%5 |= 3.90 |= 4.15 |= L.35 |= 4.50
*
Ky,3 = 3.72 |======- Ko -1,3|K2,0,3 [K2,1,3 |Ke,2,3 [K2,3,3 |-======|-——---
= 1.79/= 2.83 |= 3.61 |[= 3.75 |= 4.05
*
Kin =395 1K o %oy uKo 0,4 Ko 1,4 Ko 2,4 [mmmmmmm|mmmmmms e
= 6.35| = 1.12}= 2.27 |= 3.09 |= 3.28
¥*
Ki,5 = 3.35 |====== |7mmmmme Ko 0,5 [7======|~=====|-mmmmm oo oo
= -1.
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TABLE V
M, = 5.0 Mo = 6.0 _ M, = 8.0
*
M Re = 10°| Re = 107| BRe = 10®| Re = 107 | Re = 10° | Re = 107
/Pos Pe /Pe Pe /Pe
0.05 | 2.04902 1.79776 2.64500 2.07217 5.2742 0.8977
.10 | 1.83217 1.66667 2.23414 1.8783 3.79635 2.4807
.15 | 1.68k407 1.54400 2.000k4 1.724 3,.16168 2.1965
.20 | 1.55860 1. 44906 1.81752 1.575 2.74123% 1.959
.30 | 1.33905 1.25376 1.51745 1.3%5 2.14587 1.562
.35 | 1.23993% 1.16282 1. 38773 1l.222 1.91334 1.392
40 | 1.14653 1.07631 1.26791 1.116 1.70923 1.238
.50 | 1.02448 .91667 1.0553 .927 1. 366 1.026
TABLE VI
M, = 5.0 M, = 6.0 M_=8.0
o | Re =10°| Re =107 | Re = 10| Re = 107 |Re = 106 | Re = 107
0.05 | 1.7946 1.8110 1.7807 1.8029 1.5908 1.7871
.10 | 1.7970 1.8101 1.7830 1.8033 1.6602 1.7896
.15 | 1.7967 1.8076 1.7840 1.8007 1.6875 1.7888
.20 | 1.7954 1.80%8 1.7835 1.7980 1.7015 1.7861
.30 | 1.7908 1.7965 1.7800 1.7911 1.7198 1.7782
.35 | 1.7876 1.7933 1.7769 1.7870 1.7230 1.7732
40 | 1.7845 1.7896 1.7740 1.7830 1.7230 1.7680
50 | 1.7775 1.7830 1.7663 1.7740 1.72 1.7560
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TABLE VII
M, = 2.0 M, = 6.0 M, = 8.0
o* Re = 106 | Re = 107 | Re = 10° | Re = ‘07T | Re = 109 | Re = 107
P ® )

0.008 | 0.04T7775 | 0.47996 0.04759% | 0.047889 | 0.04L4L986 | 0.0LT6T78
.05 .10525 . 104765 .105652 . 104999 111775 .105462
.10 . 176984 .176203 177663 .176583 .187172 177341
.15 . 239846 .238855 .240758 .239354 . 252303 .24033%5
.20 .297592 .296444 .298701 . 297046 . 311755 .298217
.30 .40%428 . 402071 .4ok870 . 4028338 420111 CLokzTh
.35 .45295 451515 454541 452362 . 470599 . 45408k
Lo .500771 . hggo6h .502505 .500.L.97 .519289 .502113
.50 .592316 .590672 .594332 .591307 612406 .594151

TABLE VIII
M, = 5.0 M, = 6.0 M_=8.0
o |Re =10° | Re =107 | Re =10° | Re = 107 | Re = 20° | Re = 107
1/2 1/2
Re @ / Cr e 7%, e 7 Ce
0.10| 0.k931 0.455 0.507 0.4 0. 466 0.385

.15 .4935 L1458 .505 428 L6k . 386

.20 L4973 163 .508 L33 Ry .391

.30 L5152 .483 .524 sk 48 41k

.35 .53 499 .539 g2 LLhol 433

ity 551 .521 . 560 L] .51k 458

.50 .61 .583 621 501 .58% .535
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TABLE IX
A* A* A*
M, | Re Xe -1 -2 =3
Ao Ao Ao
106 0.13986 | -0.007Lk96 -0.0001546 | -0.0000655
5
107 | .okk23 | -.002370 —.0000154 | —mcmmmeme-
100 0.21093 | -0.0113%05 -0.0003515 | -0.000152
6
107 L0667 -.003575 -.0000%51 | -.00001k3%
100 0.39425 | -0.02113%18 | -0.001228 -0.000557
8
107 . 12467 -. 006682 -.0001222 -.0000518
TABLE X
M, = 5.0 M, = 6.0 M, = 8.0
o* | Re = 10° | Re = 107 | Re = 10° | Re = 107 | Re = 10° | Re = 107
X X
0.10 | 0.13547 0.16949 0.12745 0.18453 0.1230 0.20486
A5 | .21743 25758 .21652 .28306 22110 32502%
.20 . 30074 L3M6TT . 30809 . 38227 34513 L4729
.30 Lh6oke .52521 .Lol28 .58173 55995 69406
.35 . 55449 .61446 .58870 .68184 67091 81837
.40 .63988 .T0371 .68L403 . 78210 783325 94309
.50 .8113%5 .88223 87611 .98299 | cmmmeee | cmeeeeo
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Figure 1l.- Curved airfoil profiles. Re = 106.
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Figure 2.- Curved airfoil profiles. Re = 10/.
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Figure 3.- Flat-plate airfoil. Re = 106.
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Figure 4.- Flat-plate airfoil. Re = 10,
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